Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Da-Qing Shi, ${ }^{\text {a,b }}$ * Zheng-Yi Li, ${ }^{\text {a }}$ Chun-Ling Shi ${ }^{\text {a }}$ and Guo-Lan Dou ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China, and ${ }^{\mathbf{b}}$ The Key Laboratory of Biotechnology for Medical Plants of Jiangsu Province, Xuzhou 221116, People's Republic of China

Correspondence e-mail: dqshi@263.net

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.056$
$w R$ factor $=0.170$
Data-to-parameter ratio $=14.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1,3-trans-1,4-cis-1,2-Bis(2,4-dichlorophenyl)-1,2,3,3a,8,8a-hexahydrobenzo[e]pentalene-3-spiro- $\mathbf{2}^{\prime}$-indan-3a, $\mathbf{1}^{\prime}$-diol acetone solvate

The title compound, $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{Cl}_{4} \mathrm{O}_{2} \cdot \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$, was obtained as a by-product of the reaction of 2-($2^{\prime}, 4^{\prime}$-dichlorobenzal)-1-inden1 -one induced by a low-valent titanium reagent $\left(\mathrm{TiCl}_{4} / \mathrm{Zn}\right)$. Each of the fused cyclopentane rings adopts an envelope conformation.

Comment

The spiro[4.4]nonane skeleton has been found in many ligands for highly enantioselective hydrogenation (Lin et al., 2004). Compounds containing the spiro[4.4]nonane skeleton show biological activities such as anticonvulsant (Obniska et al., 2003). Low-valent titanium reagents have an exceedingly high ability to promote the reductive coupling of carbonyl compounds and are attracting increasing interest in organic synthesis (McMurry, 1983; Shi et al., 1993, 1997, 1998, 2003). We report here the synthesis and the crystal structure of the title compound, (I).

(I)

In (I), the $\mathrm{C} 1 / \mathrm{C} 9 / \mathrm{C} 10-\mathrm{C} 12$ cyclopentane ring is the new ring formed by dimerization of 2-($2^{\prime}, 4^{\prime}$-chlorobenzal)-1-indenone induced by a low-valent titanium reagent. This ring adopts an envelope conformation; atoms $\mathrm{C} 1, \mathrm{C} 9, \mathrm{C} 10$ and C 11 are coplanar, while atom C 12 deviates from this plane by 0.672 (2) A. The C1/C2/C7-C9 cyclopentane ring also adopts an envelope conformation, atom C9 deviating from the C1/C2/ C7/C8 plane by 0.440 (3) \AA. The third five-membered ring is an envelope conformation; atoms C12, C13, C14 and C19 are coplanar, while atom C20 deviates from this plane by $-0.534(2) \AA$. The dihedral angle between the two $2,4-$ dichlorophenyl rings is $78.4(5)^{\circ}$. In the crystal structure, classical $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) connect adjacent molecules into centrosymmetric dimers (Fig. 2).

Experimental

Compound (I), as a by-product, was prepared by the dimerization of 2 -($2^{\prime}, 4^{\prime}$-dichlorobenzal)-1-indenone ($1.45 \mathrm{~g}, 5 \mathrm{mmol}$) induced by a

Figure 1
The molecular structure of (I), showing 40% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
The packing of (I). Dashed lines indicated hydrogen bonds. H atoms have been omitted unless they are involved in hydrogen bonding.
low-valent titanium reagent $\left(\mathrm{TiCl}_{4} / \mathrm{Zn}\right)$. Yield of (I) 16%, m.p. $516-$ 518 K . The main product was $2,2^{\prime}$-[1,2-bis(2,4-dichlorophenyl)ethane-1,2-diyl] bis(1-tetralone). Single crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a petroleum ether/ acetone solution. ${ }^{1} \mathrm{H}$ NMR: $2.09\left(2 \mathrm{H}, s, \mathrm{C}^{3^{\prime}}-\mathrm{H}\right), 2.51-2.57(1 \mathrm{H}, m$, $\left.\mathrm{C}^{6}-\mathrm{H}\right), 2.89-2.96\left(2 \mathrm{H}, m, \mathrm{C}^{6}-\mathrm{H}, \mathrm{C}^{5}-\mathrm{H}\right), 3.03\left(1 \mathrm{H}, d d, J_{1}=16.8 \mathrm{~Hz}\right.$, $\left.J_{2}=8.4 \mathrm{~Hz}, \mathrm{C}^{4}-\mathrm{H}\right), 3.17\left(1 \mathrm{H}, d, J=16.8 \mathrm{~Hz}, \mathrm{C}^{3}-\mathrm{H}\right), 4.09-4.12(1 \mathrm{H}$, $\left.m, \mathrm{C}^{1^{\prime}}-\mathrm{H}\right), 5.31(1 \mathrm{H}, d, J=12.4 \mathrm{~Hz}, \mathrm{OH}), 6.09(1 \mathrm{H}, s, \mathrm{OH}), 6.43(1 \mathrm{H}$, $d, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 6.88(1 \mathrm{H}, t, J=7.2 \mathrm{~Hz}, \mathrm{ArH}), 7.08(1 \mathrm{H}, d, J=$ $7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.21-7.27$ (3H, $m, \mathrm{ArH}), 7.33-7.37$ ($2 \mathrm{H}, m, \mathrm{ArH}$), $7.46-$ $7.52(3 \mathrm{H}, m, \mathrm{ArH}), 7.58-7.64(2 \mathrm{H}, m, \mathrm{ArH}), 7.86(1 \mathrm{H}, d, J=8.4 \mathrm{~Hz}$, ArH).

Crystal data

$\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{Cl}_{4} \mathrm{O}_{2} \cdot \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$
$D_{x}=1.376 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=640.39$
Monoclinic, C2/c
$a=31.620$ (8) A
$b=10.443$ (3) A
$c=20.993$ (5) \AA
$\beta=116.931$ (4)
$V=6180(3) \AA^{3}$
$Z=8$
Mo $K \alpha$ radiation
Cell parameters from 2726 reflections
$\theta=2.5-20.6^{\circ}$
$\mu=0.42 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colorless
$0.39 \times 0.37 \times 0.15 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.854, T_{\max }=0.940$
15854 measured reflections

> 5442 independent reflections
> 2710 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.047$
> $\theta_{\max }=25.0^{\circ}$
> $h=-23 \rightarrow 37$
> $k=-12 \rightarrow 12$
> $l=-24 \rightarrow 24$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0568 P)^{2}\right. \\
\quad+14.254 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.68 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}-0.53 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 1$	$1.439(4)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.524(5)$
$\mathrm{O} 2-\mathrm{C} 13$	$1.423(5)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.578(5)$
$\mathrm{C} 1-\mathrm{C} 9$	$1.539(5)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.552(5)$
$\mathrm{C} 1-\mathrm{C} 12$	$1.544(5)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.549(5)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 8$	$4.2(4)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$-24.9(4)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 9-\mathrm{C} 10$	$150.3(3)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 12-\mathrm{C} 11$	$-163.2(3)$
$\mathrm{C} 12-\mathrm{C} 1-\mathrm{C} 9-\mathrm{C} 10$	$28.6(4)$	$\mathrm{C} 9-\mathrm{C} 1-\mathrm{C} 12-\mathrm{C} 11$	$-43.7(4)$
$\mathrm{C} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$-2.0(4)$	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 1$	$41.6(3)$
$\mathrm{C} 21-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 27$	$72.0(4)$		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.82(5)$	$1.92(5)$	$2.723(5)$	$164(5)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{H} 2 \cdots \mathrm{O}^{1 i}$	$0.83(5)$	$1.96(5)$	$2.784(4)$	$176(5)$

Symmetry codes: (i) $x,-y+1, z+\frac{1}{2}$; (ii) $-x+\frac{1}{2},-y+\frac{3}{2},-z+1$.

The hydroxy H atoms were located in difference Fourier maps and refined isotropically. H atoms on C atoms were positioned geometrically and treated as riding on their parent C atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.98 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, except for the methyl H atoms, for which $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

organic papers

The authors thank the Foundation of the 'Surpassing Project' of Jiangsu Province, and the Natural Science Foundation of the Education Committee of Jiangsu Province (03 KJB150136), for financial support.

References

Bruker (1998). SMART. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT (Version 4) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA

Lin, C. W., Lin, C. C., Lam, L. F. L., Au, Y. T. T. L. \& Chan, A. S. C. (2004). Tetrahedron Lett. 45, 7379-7381.
McMurry, J. E. (1983). Acc. Chem. Res. 16, 405-411.
Obniska, J. \& Zagorska, A. (2003). Farmaco, 58, 1227-1234.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shi, D. Q., Chen, J. X., Chai, W. Y., Chen, W. X. \& Kao, T. Y. (1993). Tetrahedron Lett. 34, 2963-2964.
Shi, D. Q., Lu, Z. S., Mu, L. L. \& Dai G. Y. (1998). Synth. Commun. 28, $1073-$ 1078.

Shi, D. Q., Mu, L. L., Lu, Z. S. \& Dai, G. Y. (1997). Synth. Commun. 27, 41214129.

Shi, D. Q., Rong, L. C., Wang, J. X., Zhuang, Q. Y., Wang, X. S. \& Hu, H. W. (2003). Tetrahedron Lett. 44, 3199-3201.

